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USING BASELINE MODELS TO IMPROVE THEORIES ABOUT EMERGING MARKETS 

ABSTRACT 

Purpose 

This chapter reports on a rapidly growing trend in the analysis of data about 

emerging market economies – the use of baseline models as comparisons for explanatory 

models. Baseline models estimate expected values for the dependent variable in the 

absence of a hypothesized causal effect, but set higher standards than do traditional null 

hypotheses tests that expect no effect.  

Design/methodology/approach 

Although the use of baseline models research originated in the 1960s, it has not 

been widely discussed, or even acknowledged in the emerging markets (EM) literature. We 

surveyed published EM studies to determine trends in the use of baseline models.  

Findings 

We categorize and describe the different types of baseline models that scholars have 

used in emerging markets studies, and draw inferences about the differences between 

more effective and less effective uses of baseline models. 

Value 

We believe that comparisons with baseline models offer distinct methodological 

advantages for the iterative development of better explanatory models and a deeper 

understanding of empirical phenomena.  
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USING BASELINE MODELS TO IMPROVE THEORIES ABOUT EMERGING MARKETS 

At the 1967 annual meeting of the American Agricultural Economics Association, 

agricultural economists debated methodological issues that remain troublesome in the 

emerging-markets research of today. Their debate concerned the usefulness of 

conventional null hypotheses and alternatives to them. 

Wise and Yotopoulos (1968) argued that Greek farmers use labor and capital 

“rationally”. Wise and Yotopoulos stated a hypothetical relationship between labor, capital, 

and output and inferred that the logarithms of labor, capital, and output should relate 

linearly to each other if farmers do indeed behave rationally. If farmers are not rational, 

they said, the regression calculation should yield coefficients for labor and capital that 

equal zero, which are two conventional null hypotheses about coefficients in multiple 

regressions. Based on their tests of statistical significance, they (1968: 396) estimated that 

“approximately two-thirds of the total variance in the inputs of capital and labor can be 

explained by variations in the profit-maximizing component of these inputs. . . . we find that 

the observed relationship between the inputs and the output is consistent with the 

hypothesis of profit maximization in somewhat imperfect factor markets.” 

When discussing Wise and Yotopoulos' study, Johnson (1968) protested that the 

null-hypothesis tests gave no support for their claim about rationality. Johnson observed 

that the null hypothesis of zero correlation would almost certainly be rejected when tested 

against “almost any other alternative”. He (1968: 398) said: “In accepting this conclusion as 

empirical verification of their measure, one should note carefully the alternative that is 

rejected. By attributing the observed correlation to their systematic component, they thus 
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reject a model that considers entrepreneurial behavior to be entirely random. A model that 

makes entrepreneurial decisions unpredictable in any systematic fashion is an unlikely 

candidate for acceptance over almost any other alternative. “ Johnson (1968: 398-399) next 

proposed an alternative comparison model: “Consider a model that said all Greek farmers 

were taught as young men to apply so much capital and so much labor per unit of land. . . . A 

regression of capital on labor should show a high degree of correlation. If we ran such a 

regression in logs, we should get not only a high degree of correlation but also a coefficient 

that is an estimate of one. . . . The test, then, cannot distinguish between a purely traditional 

and a purely profit-maximizing behavioral model.” 

In responding to Johnson's critique, Yotopoulos and Wise (1969a: 203) said, 

“Testing is a process of discriminating among competing hypotheses. A test by confirming a 

hypothesis rejects one or more alternative hypotheses -- be it the null hypothesis, a naive 

hypothesis or a serious alternative hypothesis. In our case, a conceivable null hypothesis is 

that entrepreneurs behave in an entirely random way. Rejecting this hypothesis is hardly 

an impressive record for our test, as Professor Johnson justly observed in discussing our 

paper [Johnson, 1968]. Moreover, Johnson suggested that the results of our test, the log-

linear relationships between inputs and output, are consistent with the "traditional 

behavior" hypothesis in which "all Greek farmers were taught as young men to apply so 

much capital and so much labor per unit of land" [Johnson 1968, p. 398]. Our test, then, 

does not discriminate between the profit-maximization hypothesis and the "traditional" or 

fixed-proportions hypothesis." Yotopoulos and Wise (1969a) then proposed yet another 

comparison model, which provoked further disagreements from Johnson (1969) and 

Lianos (1969). In reply, Yotopoulos and Wise (1969b: 210) said: “Still, however, the sifting 
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and winnowing of competing hypotheses need not end with the results of any single test. 

More tests may further narrow the set of acceptable hypotheses. Also, as a last resort, the 

literature on economic methodology suggests auxiliary criteria for ranking hypotheses 

which are all consistent with the facts: the realism of the assumptions; the simplicity, 

fruitfulness, and elegance of the hypothesis; its consistency with other theory; etc.” 

Thus, the economists in this debate articulated two important ideas: Firstly, 

researchers should compare their preferred theories with alternative models, not with 

conventional null hypotheses. The debaters agreed that conventional null hypotheses 

offered no serious competition for a proposed theory, but they argued about what kinds of 

alternative models would provide a more useful comparison. Secondly, researchers should 

treat each analysis as a step in a sequence of analyses, not as a final judgment. As a 

component of a sequence, a comparison model should suggest useful successors to itself. 

This chapter follows up these two ideas by reporting on a rapidly expanding trend 

in the analysis of data about emerging markets economies – the use of baseline models as 

comparisons for explanatory models. Although this trend began in the 1960s, it has not 

been widely discussed, or even acknowledged. We, the authors, discovered the trend 

somewhat accidently, as we did not know that it existed when we began our research for 

this chapter. 

The trend involves comparisons between researchers' explanatory models and 

alternative models, which we call "baseline models". These alternative models are typically 

simpler than explanatory models and they typically make no assumptions about causation. 
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We believe that comparisons with baseline models offer a distinct methodological 

improvement over tests of conventional null hypotheses. 

Because they are emerging innovations, baseline models are heterogeneous and 

their users have adopted diverse terminologies. The heterogeneity and diversity may 

continue to grow as researchers explore more kinds of baseline models. There is reason to 

conjecture that baseline models become more useful when researchers tailor them to 

specific studies. However, as we describe later, most of the baseline models used to date 

fall into a small number of general categories. 

The next section of this chapter explains why we began to search for these baseline 

models. We believe that our reasons for searching probably shed light on the motivations 

of researchers who have been creating these models. The ensuing sections then describe 

the kinds of baseline models we found in studies of emerging markets economies and draw 

inferences about the differences between more effective and less effective uses of baseline 

models. 

WHY WE SEARCHED FOR BASELINE MODELS 

It is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail. 

A. H. Maslow (1966: 15–16) 

A series of experiences over many years has revealed various ways that statistical 

analyses can produce misleading results. We tell this story mainly from Starbuck's 

viewpoint, as he migrated gradually from teaching conventional statistics toward calling 

for methodological changes. 
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For Starbuck, the story began in 1966 or 1967, when he read a mathematical proof 

that a researcher who obtains a large-enough sample size can reject any point null 

hypothesis. As sample size increases, the confidence interval around the sample estimate 

shrinks and becomes less and less likely to include the hypothesized infinitesimal point. 

One consequence is that even trivial differences or differences based on measurement 

errors can lead to statistically significant findings. A second consequence is that statistical 

significance depends on researchers' motivation – their willingness to continue collecting 

data until they have enough. In general, researchers face a dual challenge of discovering 

substantively important relationships while also screening out relationships that have no 

importance. Conventional null-hypothesis significance tests set thresholds that are much 

too low. Consequently, hypothesis tests label as "statistically significant" many findings that 

have no substantive importance or that only describe idiosyncrasies of specific data. 

Although Starbuck did not know this, researchers had discovered the sensitivity of 

statistical significance to sample sizes as early as the 1930s (Berkson, 1938). Since then, 

researchers have debated this and many other problems associated with the use of 

conventional null-hypothesis significance tests (Cohen, 1994, Edwards and Berry, 2010, 

Gigerenzer, Krauss and Vitouch, 2004, Greenwald, 1975, Rodgers, 2010, Schmidt and 

Hunter, 1997, Schwab et al., 2011, Seth et al., 2009, Thompson, 1999). Because 

contemporary computer-based data management and data analysis facilitate large samples, 

modern technology has amplified these problems by helping researchers to convert trivial 

and meaningless differences into statistically significant findings. In the absence of rigorous 

replication of research findings, it is incredibly difficult to assess the frequency of false 

positives in research studies. 
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Some Reasons Why False Positives Are Prevalent in Empirical Studies 

Conventional null hypotheses are especially problematic for analyses of time series. 

Two of Starbuck's colleagues, Ames and Reiter (1961) showed that autocorrelations in 

economic time series make it extremely likely to find statistically significant correlations 

among variables even in the absence of any direct causal relationships between them. 

Ames and Reiter found that five-sixths of the series in the Historical Abstract of the United 

States have autocorrelations above .8 for a one-year lag. These autocorrelations cause 

series to correlate with each other. Ames and Reiter observed that starting with randomly 

chosen target time series and then choosing a second series at random, an economist on 

average would need only three trials to discover a correlation of .71 between the two 

series. 

Two decades later, Peach and Webb (1983) demonstrated a practical implication of 

spuriously significant correlations among economic time series. They created hypothetical 

‘models’ by selecting random combinations of a dependent variable and three independent 

variables, which they analyzed as if these were macroeconomic models. They found that 64 

percent to 71 percent of the independent variables had ‘statistically significant’ coefficients. 

With a simple linear model, 64 percent of the combinations of variables had R2s over 0.99 

and 94 percent had R2s over 0.95. Even when they converted all variables to first 

differences, which greatly reduces autocorrelation, 32 percent of the combinations of 

variables had R2s over 0.60 and 10 percent had R2s over 0.80. 

The foregoing studies induced Webster and Starbuck (1988) to investigate the 

possibility of spurious correlations in cross-sectional data. They compiled nearly 15,000 
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correlations published in three prominent management journals. These data included all of 

the correlations among studied variables, not only the correlations in hypotheses. The 

correlations had very similar distributions in all three journals, and the distributions for 

small samples were quite similar to those for large samples. Both the mean and the median 

correlations were close to 0.09 and 69 percent of the correlations were positive. As well, 

researchers had tended to obtain larger samples when they found correlations with 

smaller absolute values. These weak correlations form a background of meaningless or 

substantively unimportant correlations that researchers may mistake for significant 

relationships, especially when they have large samples. Webster and Starbuck simulated 

what would happen if researchers would search randomly for statistically significant 

correlations in such data. Researchers' would have 2 to 1 odds of coming up with a 

statistically significant correlation on the very first try, and 24 to 1 odds of discovering a 

statistically significant correlation within three tries. 

Webster and Starbuck pointed to several reasons for the existence of confounding 

background correlations. Two of these reasons have relevance to studies of emerging 

markets economies. Firstly, researchers are intelligent, observant people who exhibit 

foresight about their findings. They are likely to have intuitive understanding of people and 

of social systems; they formulate hypotheses that are consistent with their intuitive 

understanding; they are quite likely to investigate correlations and differences that deviate 

from zero; and they are less likely than chance would imply to observe correlations and 

differences near zero. Secondly, a few broad characteristics of people and social systems 

link social-science data. For example, intelligence correlates with many other 

characteristics and behaviors, such as leadership, job satisfaction, job performance, social 
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class, income, education and geographic location during childhood. These correlates of 

intelligence tend to correlate with each other, even if there are no direct causal relations 

among them, because of their common relation to intelligence. Other broad characteristics 

that correlate with many variables include sex, age, social class, education, group or 

organizational size, geographic location, culture, affluence, and political system. 

A Brief Digression: False Positives in Emerging Markets Research 

We replicated part of Ames and Reiter's (1961) investigation of autocorrelations 

with data about emerging markets. We randomly selected 40 time series from the World 

Bank's world-development indicators; the series included 20 countries that are in the MSCI 

emerging-market index (World Bank, 2011). Figure 1 shows the estimated absolute values 

of the autocorrelations for various lags, and Figure 2 shows the autocorrelations for 

absolute values, natural logs of values, and changes in values. 

These findings leave no doubt that the studies by Ames and Reiter (1961) and Peach 

and Webb (1983) apply to emerging-markets research. If a researcher randomly selects 

two time series for the same country, then regresses the current values of one on the 

lagged values of the other, there is a 43 percent probability that lagged variable will appear 

to explain more than 50 percent of the variance in the current variable. If the researcher 

repeats this process three times, the chance of finding such a highly correlated pair 

increases to 82 percent. 

We also replicated the study by Webster and Starbuck (1988) with data about 

emerging markets. We identified all published research studies on ISI Web of Knowledge 

for the years 2007 to 2011 in the fields of business and management research that had 
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titles containing 'emerging market', 'emerging country,' 'developing country' or derivations 

of these terms. We identified 43 quantitative empirical studies that had reported a total of 

3132 simple correlations. The mean correlation was +0.08 and the median +0.05 (see 

Figure 3). 

Assuming that these correlations approximate the population of correlations that 

emerging-markets researchers typically encounter, we can estimate the probabilities for 

finding statistically significant results. Using the median sample size in the actual studies (n 

= 232), researchers have a 45 percent chance of finding a statistically significant 

correlation if they randomly draw one correlation from the population of reported 

correlation coefficients. For two or three random draws, the probability of finding a 

statistically significant correlation increases to 70 percent and 83 percent respectively. 

With a sample size of 896, which is an average that omits the two largest samples, the 

probabilities of finding a statistically significant correlation rise to 60 percent for a single 

draw, and to 99 percent for three draws. These simulations confirm that conventional null 

hypotheses set a low threshold for the identification of important findings, and these 

simulations support concerns about a high proportion of false positive results in emerging-

markets research. 

Two Proposals for Raising the Threshold 

The single most important limit of null-hypothesis testing is that there is only one statistical 

hypothesis -- the null, which does not allow for comparative hypotheses testing. . . . Only when 

one knows extremely little about a topic (so that one cannot even specify the predictions of 

competing hypotheses) might a null-hypothesis test be appropriate. 
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Gigerenzer et al. (2004: 397) 

Bioecologists began to question the usefulness of conventional null-hypothesis 

statistical tests in the early 1980s. In particular, Connor and Simberloff (1983, 1986) 

argued that conventional null-hypothesis tests have no value because interactions within 

ecological communities make simple null hypotheses very unrealistic. They proposed that 

bioecologists should replace null hypotheses with "null models", which they (1986: 160) 

defined as non-causal distributions for the studied variables. These discussions in 

bioecology supported the usefulness of comparing explanatory hypotheses with models 

that are more complex than conventional null hypotheses. 

For example, the Galapagos Islands have different numbers of species of land birds. 

These numbers have fed debates about whether they reflect competition between species, 

physical differences among the islands, or vegetation differences. Connor and Simberloff 

(1983) used a "null model" to estimate the co-occurrence patterns of species of birds on 

each island. They assumed that each island had the number of species observed on it and 

that each species inhabited as many islands as observed, but that species were otherwise 

distributed randomly and independently. All the numbers of species pairs actually 

observed lay within two standard deviation confidence limits, and most observations lay 

close to the expected values. From this comparison, Connor and Simberloff concluded that 

competition between species has had little effect on the actual numbers of species pairs. 

Although Starbuck found the notion of null models interesting but his personal 

experience led him to prefer a different alternative. He had been teaching a course in 

forecasting, which made him aware that forecasting researchers normally compare their 
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forecasts with "naïve hypotheses" instead of null hypotheses. One of these naïve 

hypotheses — no-change in value — says that the next value in a series will be the same as 

the current value. Another naïve hypothesis — no change in trend — says the next value 

will differ from the current value by the same amount that the current value differs from 

the previous value. These hypotheses are "naïve" insofar as either of them could come from 

a young child who has no understanding of the causal processes that generate a series. 

Forecasting researchers argue that a complicated forecasting technique should be able to 

make more accurate predictions than these naïve hypotheses. Thus, Starbuck (1994) 

proposed that researchers ought to compare their preferred theories with naïve 

hypotheses instead of with null hypotheses. Although naïve hypotheses set very modest 

thresholds for performance, they set higher thresholds than do conventional null-

hypotheses. 

However, the bioecologists and Starbuck were actually latecomers to these 

discussions. As we described in the introduction, agricultural economists had already been 

discussing these issues in the 1960s. Indeed, we have found examples of researchers using 

baseline models throughout the social sciences, economists being among the earliest 

experimenters with these methods. However, this paper focuses on studies related to 

emerging markets and developing countries. 

HOW WE SEARCHED FOR BASELINE MODELS IN EMERGING MARKETS RESEARCH 

AND WHAT WE FOUND 

The experiences described above suggested two kinds of baseline models: null 

models and naïve hypotheses, so these terms became the starting points for our 
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investigation of the use of baseline models. We had no idea that we would find a trend. We 

were merely curious whether emerging-markets researchers had used these terms, or 

variants of them, and if so, in what ways. 

According to the data in Google Scholar, emerging-markets researchers have been 

using the terms null models and naïve hypotheses with escalating frequency. Figure 4 

graphs the frequencies of the phrases "naïve hypothesis," “naïve model,” or “null model” in 

papers that also mentioned "developing countries" or "emerging markets". Researchers 

who study emerging markets economies made little use of baseline models before 1995 but 

usage has been growing rapidly since then. 

Of course, searches of Google Scholar based on a few specific terms are crude 

instruments. Some researchers, for example, have used the term “naïve" to denote 

hypotheses or models that (1) the public at large might use, (2) might arise from a lack of 

information, (3) prior studies disconfirmed, or (4) misguided competing researchers 

proposed. Some researchers have used the phrases "naïve hypothesis," “naïve model,” or 

“null model” without actually making comparisons with their explanatory models. A few 

researchers have even characterized conventional null hypotheses as "naïve hypotheses" 

or “null models”. However, we followed up the Google searches by examining hundreds of 

specific papers, and did not find a time-linked pattern that would cast doubt on the 

qualitative profile in Figure 4. If anything, Figure 4 likely understates the acceleration in 

the use of baseline models, as various terms have emerged over time to supplement the 

older ones. For instance, in longitudinal or time-series studies, some researchers have 

described random walks as null models, but other researchers have compared their 
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explanatory models with random walks without characterizing the random walks as null 

models, and this latter practice appears to have become more prevalent over time. 

This paper applies the label "baseline models" broadly to all of the alternatives to 

conventional null hypotheses that researchers use as bases for comparison with 

explanatory models. Baseline model seems to be a better label than others because it 

highlights the idea of a platform for comparisons with an explanatory hypothesis. 

For clarity, we propose that a baseline model predicts an effect on a dependent 

variable in the absence of the effect hypothesized by researchers' explanatory model. The 

effect predicted by a baseline should also differ from the no-effect hypothesized by a 

conventional null hypothesis. For example, some studies have used the terms null model, 

naïve model, or naïve hypothesis to describe assumptions of homogeneity across countries 

or periods. However, the assumptions used to create such models are equivalent to 

conventional null hypotheses of no difference or zero effect, and they suffer from the same 

liabilities. Sufficiently large samples will inevitably demonstrate that differences exist, but 

this demonstration will say little about the substantive relevance of these differences 

between countries or periods. Thus, we do not regard these simple homogeneity models as 

baseline models. 

Conventional null-hypothesis tests propose no effect for all phenomena in all 

empirical contexts (Gigerenzer et al., 2004). In contrast, users of baseline models adjust 

assumptions and evaluation approaches to specific phenomena and empirical contexts. 

These adjustments can take many forms, such as accounting for random processes other 

than random sampling, effects of third variables, or non-linear underlying effects. 
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Consequently, baseline models are diverse. The next section categorizes them, but these 

categories only describe what researchers have done to date, and future research will likely 

introduce additional kinds of baseline models and create new categories. Diversity and 

inconsistency in terminology and usage are natural and desirable during the creation of a 

methodological innovation. Researchers are groping for better ways to develop 

understanding. Some of their methodological innovations will work well and some poorly. 

Distinctions between baseline models and explanatory models are not always clear. 

As an abstract principle, baseline models can serve as benchmarks to help researchers 

evaluate the effectiveness of explanatory models and to suggest ways to improve 

explanatory models. Some researchers, however, blur these distinctions and leave it 

unclear whether they intend models to be baselines or proposed explanations. As well, 

some researchers do not actually propose explanatory models but use baseline models 

solely to highlight properties of data. We argue later that a grey zone between baseline 

models and explanatory models is not surprising and that it can support meaningful model 

improvement. 

Based on the broad definition of baseline models introduced above, we investigated 

the actual use of baseline models in specific emerging markets studies, and developed 

categories for alternative types of baseline models. Because they only describe what 

researchers have done and we have found, the categories are a bit untidy. Some of them 

overlap. The next section introduces these categories and describes some exemplar studies. 

The ensuing section concludes this chapter with some thoughts on the value and promise 

of baseline models for emerging markets research. 
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EXAMPLES OF BASELINE MODELS 

Table 1 categorizes the baseline models that we have found in studies about 

emerging markets and developing countries. Some of these categories offer rather rigorous 

challenges to theorists. The following subsections give illustrative examples of these 

categories. However, studies do not always fall cleanly into a single category, mainly 

because researchers' assumptions about probability distributions are sometimes 

ambiguous and overlapping. 

Log-Linear Scaling 

So, how should researchers compare small countries with large ones? How does a 

small country change when it grows larger? Many researchers deal with such issues 

multiplicatively: if the inputs double, the outputs should double . . . approximately. 

One widely used version of this idea is the Cobb-Douglas production function, which 

takes the form: 

Q = ALαC(1-α) 

Where Q is the total output (or consumption) of an economy, L is the input of labor (or 

employment), C is the input of capital, and A and α are constants. The constant A is usually 

called "total factor productivity" and interpreted as an indicator of technological 

effectiveness. One useful property of this function is that logarithmic transformations yield 

a linear function: 

logQ = logA + αlogL + (1- α)logC 
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First introduced in the mid 1800s, the Cobb-Douglas function has been used in 

many, many theoretical and empirical analyses. For example, Mastromarco (2008) looked 

at the effects of foreign direct investment, imported capital goods, and human capital on 

the productivity of 57 developing countries over 40 years. During this analysis, she used 

the Cobb-Douglas function as a baseline to compare with the more complex 

transcendental-logarithmic production function. She compared the baseline model 

logQ = β1logL + β2logC 

with the transcendental-logarithmic model by testing the point null hypotheses that β3, β4, 

and β5 all equal zero 

logQ = β1logL + β2logC + β3(logL)2 + β4(logC)2 + β5logL*logC + Error 

Of course, no one should have been surprised that she could reject these null hypotheses. 

Thus, by the logic of conventional null-hypothesis tests, the complex function was more 

effective than the simpler baseline model. 

Traditional Behavior 

Many researchers have used concepts about "traditional behavior" as baseline 

models and they have used traditional behavior with both cross-sectional and longitudinal 

data. Some studies have obtained observational data about traditional behavior, but many 

studies have not, they have merely ascribed various characteristics to traditional behavior. 

It has also been popular to contrast "traditional behavior" with "rationality." The notion 

that traditional behavior differs from rational behavior dates back at least to 1914 when 

Weber distinguished among four "ideal types" of action. Weber defined these ideal types as 

(a) emotional action, when people act on their emotions without consciously thinking 
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through the results, (b) traditional action that conforms to customs and habits, (c) 

instrumental action, when people make careful calculations about goals to pursue and 

means to attain these goals, and (d) value-rational action, when people pursue highly 

valued goals, possibly adopting undesirable means while doing so (Zafirovski, 2004). 

Barrett (1993) provided a good example of the use of "traditional behavior" as a 

baseline model. He gathered data about the frequencies of traditional healthcare practices, 

which he defined as herbal remedies, reliance on spiritual healers, and childbirth at home. 

He also gathered data about the frequencies of more modern "biomedical practices" that 

included vaccination and reliance on physicians and hospitals. His data had high-quality: he 

surveyed a randomly selected ten percent of the households in a Nicaraguan city and 

virtually all of the households in four Nicaraguan villages. His goal was not to demonstrate 

that biomedical practices had better outcomes than traditional practices, but to discover 

factors that influence people's use of different types of healthcare practices. Although he 

found statistical correlates of traditional practices, he concluded that these correlations are 

mainly side-effects of the availability of biomedical care. Biomedical care was not equally 

available to everyone. Thus, the comparison between traditional practices and biomedical 

practices went beyond mere statistics and illuminated the economic, ethnic, and social 

processes that generated the statistics. 

No-Change and No-Change-in-Trend 

Researchers often propose baseline models about the stability of variables over 

time. Social trends rarely change very rapidly; even fads rise and wane gradually. 

Consequently, social trends have inertia in both their magnitudes and their rates of change. 
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This inertia allows simple baseline models to fit most time-series data very well, and it 

produces causal processes in which random perturbations have lasting effects. The latter 

property makes it easier to forecast future values of series, but also makes it more difficult 

to infer the causal processes that produced past values of series. 

A conventional null hypothesis tests whether a variable has any effect at all. In 

contrast, the simplest baseline model for time series assumes that the variables of interest 

have some kind of effect on the dependent variable, but predicts that the size of this effect 

will not change over time. 

Darrat and Zhong (2000) described how they applied a no-change baseline model, 

which they called a 'naive model,' in their study of stock prices on Chinese stock exchanges: 

A NAIVE model maintains that the best forecast for next week’s stock price is simply 

this week’s price. . . . Given their prominence in the literature, we employ the NAIVE, 

ARIMA, and GARCH models to generate ex post weekly forecasts of Chinese stock 

prices. In addition, we also utilize another, potentially powerful, forecasting technique 

known as an Artificial Neural Network (ANN) model. (p. 109) 

The two central findings then are that the [baseline] random-walk model does not 

receive support from the forecasting results, and that the ANN dominates other models 

in forecasting Chinese stock prices in both Shanghai and Shenzhen markets. The 

evidence is underscored by the considerable percent improvement in the sum of RMSE 

from the ANN over the NAIVE model, amounting to 57% improvement for the Shanghai 

market and 43% for the Shenzhen market. Such significant gains in forecasting Chinese 

stock prices attest to the departure of the Chinese markets from the random walk 
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hypothesis [baseline model] and also further support the superiority of the ANN as a 

powerful forecasting device. (p. 113) 

Other researchers who have used no-change models include Gonzales (2000) in a 

study of real growth, inflation, and international trade in Mexico, Norhayati et al. (2006) in 

a study of correlates of sudden changes in dividends, and Ozsoz et al. (2010) in a study of 

interventions into foreign currency markets by the central banks of Croatia, Czech 

Republic, and Slovakia. 

The next simplest baseline model for time series predicts that variables will 

continue to change at the same rates as they have been changing recently. Chen and Leung 

(2003) used such a 'no-change-in-trend' baseline model, which they called a 'naive 

forecast' or 'random walk model,' to evaluate several Bayesian vector models to predict 

changes in currency exchange rates in Australia, Japan, and Korea. 

. . . the random walk model forecast [baseline model] of next month’s change in 

exchange rate is just this month’s change in exchange rate." (p. 892)  

Both the [Bayesian vector error correction model] and the [Bayesian vector 

autoregression model] . . . are able to forecast the 1 month ahead changes in exchange 

rates better than the naive model. (p. 898) 

Other researchers who have used this no-change-in-trend model include Arora and 

Smyth (1990) who evaluated the accuracy of the economic forecasts made by the 

International Monetary Fund, Coën and Desfleurs (2004) who examined the accuracy of 

earnings forecasts by financial analysts in Hong Kong, Korea, Indonesia, Malaysia, the 
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Philippines, Singapore, Taiwan and Thailand, and Sensarma and Jayadev (2009) who 

examined the effects of risk-management practices on the stock prices of Indian banks. 

Although several of the foregoing researchers used the term "random walk", we 

have not categorized their baseline models as stochastic processes because their baseline 

models were actually deterministic rather than probabilistic. The researchers used 

"random walk" only as a verbal justification for the assumptions made by their baseline 

models. There have been researchers who used "random walks" as baseline models 

(Levinthal, 1991), but we have not found examples of this practice in studies of developing 

countries or emerging markets. 

Statistical Independence 

Every statistics course introduces the idea of statistically independent variables and 

illustrates this idea with tables in which the marginal probabilities of variables on the axes 

determine the probabilities of combinations of events. Tables 2 and 3 illustrate two 

variations on this idea. Table 2 imagines that two variables can each take three values that 

have differing probabilities of occurrence; the nine cells at the lower-right show the 

implied probabilities of combinations of these values if the two variables are statistically 

independent – that is, if the value of Variable 1 is uncorrelated with the value of Variable 2. 

Researchers can use a table of this sort as a baseline for assessing the degrees to which 

observed events look like those implied by statistical independence, and the Chi-square 

statistic is a familiar metric to evaluate the possible effects of randomness. 

Table 3 imagines imports and exports among three countries; the cells on the major 

diagonal are empty because countries do not export to or import from themselves. In their 
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analysis of favored-nation biases for trade among 14 nations and regions, Schmidt and 

Vandenborre (1970) described how they used a table of this sort as a baseline:  

It develops a set of expected data from assumptions of complete indifference among 

the trading partners and thus allows one to measure the plus or minus differences 

between these base values and the actual amounts of transactions in each direction for 

every pair of countries or regions. The method removes gross size effects by taking 

into account the actual volumes of trade as registered by every country (exports as 

well as imports) and locates departures from the null-model which could then be 

examined in a subsequent investigation. The causes for the departures from the null-

model could be prices, transportation costs, formally established preference policies, 

etc. . . . The no-preference assumption is made without regard for reality, insofar as 

expected data deviate from the actual data will a system of preferences be revealed. (p. 

8-9) 

Unfortunately, such tables lure researchers into making Chi-square tests, which 

portray the assessment as a binary one -- independent or not? Baseline models can be more 

valuable when researchers use them as diagnostic tools to evaluate patterns in deviations 

from statistical independence. For example, Morgan et al. (2010) in their study of education 

in a community in northern Nigeria used their baseline model to highlight correlates of 

educational attainment that included gender, wealth, and social networks. Likewise, 

Schmidt and Vandenborre (1970) used their baseline model to spot deviations from 

statistical independence that corresponded to trade agreements, cultural similarities, and 

price differentials. 
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Markov Chains 

Many baseline models for longitudinal theories start with assumptions or data 

about period-to-period changes. The simplest such models assume that changes in every 

period have constant probabilities. Researchers have made assumptions that are more 

complex in two ways: Markov chains and bootstrapping. 

In a Markov chain, each possible current state of a stochastic variable defines a 

distinct probability distribution for the next change, and as originally formulated, the 

different probability distributions in a Markov chain are unvarying. With modern statistical 

software, Markov chains have often been reformulated as conditional correlations.  

Some researchers have fitted longitudinal data to Markov chain models to see 

whether the data fit the assumption of unvarying probabilities. For example, Diamandis 

(2008) analyzed interactions among financial markets in Argentina, Brazil, Chile, Mexico, 

and the US by estimating conditional correlations among stock prices. He observed that the 

conditional probabilities changed several times, and he attributed these shifts to financial 

crises that occurred around these times. Masson and Ruge-Murcia (2005) loosened the 

assumption of unvarying probabilities by assuming that the probabilities varied as 

functions of four explanatory variables. Using data about 2,430 changes in exchange rate 

policies by 168 countries, they drew inferences about differences between developed and 

developing countries. 

Bootstrapping 

Bootstrapping uses the available data as a foundation for simulating possible 

alternative data. Bootstrapped models of longitudinal data generate new changes in 
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variables by making random draws from observed distributions of past changes. Several 

researchers have used bootstrapping in retrospective efforts to evaluate the effectiveness 

of technical rules for trading stocks. There seems to be agreement that technical rules are 

not effective with US stocks but they might be more useful with stocks in emerging markets 

economies. The bootstrapped analyses indicate that the usefulness of technical rules in 

emerging markets either does not exist (Marshall and Cahan, 2005) or has been decreasing 

(Cai et al., 2005). However, Muga and Santamaría (2007) used bootstrapping to support the 

idea that momentum trading is useful in the stock markets of Argentina, Brazil, Chile, and 

Mexico. 

Stochastic Processes with Controls 

In field studies, changes in an independent variable of interest frequently coincide 

with changes in other variables that might also have affected the dependent variable. In 

such cases, baseline models that account for the effects of other factors help to correctly 

identify effects of the independent variable of interest. For example, Bekaert, Harvey and 

Lundblad (2001) investigated the annual economic growth of emerging economies 

following liberalization of financial equity markets. Market liberalization, however, often 

coincided with other major political reforms and economic restructuring that might have 

had direct effects on economic growth. Using Monte-Carlo simulations and the generalized 

method of moments (GMM), the researchers estimated baseline models that took account 

of macroeconomic conditions, banking sector development, and equity market 

development. Then they made hierarchical comparisons of these baseline models with 

models that also included the explanatory variable "equity market liberalization". The 

models that controlled for other influences estimated that "liberalization" had had an 
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average growth effect that was much smaller than the estimated growth effect without the 

controls. 

Topic-Specific Baseline Models 

Some baseline models make sense within a specific topic area but have limited 

meaning elsewhere. Specialists in Finance are very familiar with the capital asset pricing 

model (CAPM) formula for estimating the cost of capital. Economists know the hypothetical 

properties of optimal resource allocations. Epidemiologists know the development curve 

for the spread and decline of epidemics. 

Traditional CAPM. Donovan and Nuñez (2012) estimated the costs of capital for 

investments in renewable energy in Brazil, China, and India. The authors conjectured that a 

so-called "downside Beta CAPM" would give more reliable estimates because it allows for 

the possibility that investors have strong aversion to losses. The authors also conjectured 

that the estimation formulas should be different for firms in different countries. Donovan 

and Nuñez compared their conjectures with the estimates produced by a "global CAPM" 

baseline model, which they computed across 60 companies distributed equally among all 

three countries and which gives no special emphasis on losses. They inferred that their 

conjectures were correct: Investors do pay more attention to losses and costs of capital 

differ across countries. 

Optimal resource allocation. Pickett et al. (1974) investigated production methods 

used in the sugar and footwear industries in Ethiopia and Ghana. As a baseline model, the 

authors (1974: 47) adopted a conventional microeconomic inference: "In profit-
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maximizing equilibrium in a two-factor model, the ratio of marginal products of the two 

factors is equal to the factor-price ratio." However, the authors (1974: 51) found:  

The research . . . (a) records the fact that sugar and footwear production tends to be 

much more capital intensive than would be expected in Ethiopian and Ghanaian 

conditions; (b) establishes that there is considerable scope for choice of techniques 

in the two industries considered; and (c) suggests that in sugar production (in 

Ghana) and footwear production (in Ethiopia and Ghana) labour-intensive as 

compared to capital-intensive processes would economize in the use of capital, yield 

higher net present values for given projects and provide more employment. . . . 

Consequently, in its strongest and most challenging form, the puzzle which has to be 

resolved – as a prelude to policy action – is why, given this technological flexibility 

and demonstrated scope for improvement even in the face of factor-price 

distortions, appraisal of developing country projects does not produce more 

rational results than those now obtained. 

The researchers attributed these findings, in part, to the use of engineers trained in 

developed countries to design plants for developing countries and, in part, to economists' 

willingness to defer to engineers. 

Epidemic curve. Hallett et al. (2007) used a complex baseline model in their 

discussion of HIV trends in Kenya, Thailand, Uganda, and Zimbabwe. The curve asserts that 

the number of cases first increases slowly, then increases rapidly to a peak, whereupon the 

number begins to decline but does not drop to zero. The authors argued, 
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In the past years, HIV prevalence has declined from very high levels in a few 

countries, including Zimbabwe and parts of urban Kenya. . . . Care needs to be taken 

in analysing declines in prevalence because the natural pattern of incidence (ie 

without any behaviour change) in an epidemic is to increase until the at-risk 

population is saturated and then to decline to a new lower level matching the supply 

of new susceptible individuals. . . . Such a decline could be expected approximately a 

decade after the period of most rapid HIV spread. These natural dynamics need to 

be excluded as an explanation of decreases in HIV prevalence if we are to detect 

success in HIV control. . . . Observational studies exploring national reductions in 

HIV prevalence require mathematical models of the transmission dynamics of HIV 

to create a null model describing the trajectories of incidence and prevalence in the 

absence of the intervention. It is then possible to compare the observed data with 

this null model to estimate the impact of the intervention. 

WHERE LIES THE PATH TOWARD PROGRESS? 

Comparisons of explanatory models with baseline models can be better than 

conventional null-hypothesis tests. However, researchers can use baseline models much 

more effectively than has been the case to date. Any methodological innovation poses 

challenges as well as opportunities. The studies we have reviewed raise five issues that 

warrant future thought. 

Firstly, baseline models raise the standard for identifying substantively important 

findings. However, the height of this standard depends on the appropriateness and 

complexity of the baseline models. Most of the baseline models we found are very simple 
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ones, and some of them differ only slightly from conventional null-hypothesis tests. As a 

result, they leave the standard rather low. For example, Mastromarco (2008) compared a 

baseline model that included just two independent variables 

logQ = β1logL + β2logC 

with an explanatory model that included three more quadratic terms 

logQ = β1logL + β2logC + β3(logL)2 + β4(logC)2 + β5logL*logC + Error 

Her comparison tested the point null hypotheses that β3, β4, and β5 equal zero. She 

inferred that her explanatory model is better than the baseline model because she could 

reject the three null hypotheses. However, those three null hypotheses were point 

hypotheses that insisted the data must be consistent with β3, β4, and β5 being exactly zero 

– not very close to zero, but exactly on the infinitesimal point at zero. As a result, 

Mastromarco could have made certain of rejecting the three null hypotheses by gathering a 

large-enough sample. 

Secondly, when baseline models become ritualistic, researchers devote less care to 

puzzling over the best ways to adjust them to the immediate empirical contexts and to find 

defects in their explanatory theories, and consequently, they derive less value from their 

analyses. For example, many studies of time series used one of two very conventional 

baseline models – either no-change or no-change-in-trend. Although these baseline models 

do set higher standards than has often been the case with conventional null-hypothesis 

tests, they are still very elementary starting points: They incorporate no assumptions about 

the causal processes that generate the time series or about the potential uses for 

explanatory models. The most interesting and useful examples of baseline models 
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incorporate assumptions that reflect the idiosyncrasies of specific research topics and 

contexts. For instance, studies of time series could consider baseline models that take 

account of specific exogenous influences or specific types of feedback. 

Thirdly, comparison of an explanatory model with a baseline model is quite 

different from using the baseline model to "test" the explanatory theory. The word "test" 

implies a dichotomous judgment about the adequacy of an explanatory model, whereas the 

word "compare" implies an analysis of differences between models. How does the 

explanation provided by the baseline model differ from the explanation provided by the 

explanatory model? For example, how do the residuals around a baseline regression 

function differ from the residuals around an explanatory regression function? By analyzing 

the different patterns in the residuals, a researcher can identify observations that each 

function explains well or poorly, and possibly, the researcher can develop better 

understanding of what makes the explanatory model better. Wimsatt (1987, 2002) pointed 

out that, when researchers are trying to analyze unexplained residuals rather than trying to 

fit data more closely, baseline models built on false assumptions can be more useful than 

baseline models built on realistic assumptions. 

Fourthly, comparisons of explanatory models with baseline models have usually 

differed from competitions between alternative explanatory models. Since researchers 

design or select their baseline models, they have full control over the properties of these 

models, and they can decide how closely their baseline models resemble their explanatory 

theories. 
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Leavitt, Mitchell, and Peterson (2010) and Rodgers (2010) have advocated that 

researchers should stage competitions between alternative theories. For competitions to 

be meaningful, of course, the competitors have to be more than artificial constructions 

controlled by the researchers. New models can compete with preexisting models, or the 

models proposed by one researcher can compete with the model proposed by a different 

researcher. Researchers have used baseline models in such competitions. For example, 

Connor and Simberloff (1983) regarded their model of randomized species pairs as a 

competitor to existing models. However, most baseline models have been diagnostic 

devices rather than genuine alternative models. 

Fifthly, use of baseline models implies that researchers are trying to progress from a 

less understanding toward greater understanding. Such researchers may not be sure they 

understand the phenomena they are investigating, or they may have little confidence in 

some tentative conjectures, or they may be very aware that their theories are incomplete. 

They want to improve their theories rather than to demonstrate the excellence of their 

theories. They are aware that they could have designed or managed their studies better, or 

that their data are unreliable, or that they may not have noticed significant influences or 

patterns. Thus, use of one baseline model implies that the ensuing step is likely to be 

development of subsequent and different baseline models. 

One way to progress in understanding is to use series of analyses to develop from 

simpler baseline models toward more complex baseline models. For example, Mastromarco 

could have examined deviations of her data from the baseline model 

logQ = β1logL + β2logC 
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to develop ideas about a better explanatory model. These deviations might have led her to 

consider quadratic effects of the sort she actually considered. Or, they might have led her to 

add another variable such as technological development (Solow, 1957): 

logQ = β1logL + β2logC+ β3logT 

An alternative way to progress in understanding is to move from less abstracted 

baseline models toward more abstracted baseline models. Gotelli and Graves (1996) 

reported that bioecologists have often debated about the inclusion of data properties in 

baseline models. For example, in the study mentioned earlier in this chapter, Connor and 

Simberloff (1983) assumed that each of the Galapagos Islands had the actual number of 

bird species observed on it and that each species inhabited as many islands as actually 

observed. These assumptions incorporate information about some physical and vegetation 

differences among the islands. A baseline model that incorporates no data properties is 

easy to reject, but rejecting it yields no information because the model is so unrealistic. On 

the other hand, a baseline model that incorporates many data properties is very difficult to 

reject because it differs little from the data, but rejecting such a complex model also yields 

no information because it confounds too many assumptions. Although the two extremes 

are not useful, bioecologists have argued about the desirability of options between the 

extremes. 

There are other ways to progress from lesser understanding toward greater, but 

optimal paths cannot exist. In order to find the optimal path to a destination, one has to 

know one's destination. The essence of research is that exact destinations are unknown, 

and in the social and behavioral sciences, researchers may discover more interesting and 
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exciting destinations as they progress. Researchers need to reflect again and again about 

what they have learned so far and what would be a productive next step. What would be 

some important questions to ask next? What would be an even tougher challenge to 

attempt? 

Archibald's world 

Possibly the most surprising outcome of our search for baseline models was a 

renewed awareness of and respect for the difference between testing a theory and 

analyzing data. Many users of baseline models have not seen themselves as "testing" their 

explanatory theories.  

More generally, data analyses provide very weak foundations for refuting 

inadequate theories. Archibald (1967) is one of several philosophers who have criticized 

the idea that data provide grounds for refuting theories, even very bad ones. He argued that 

knowledge is never complete and never entirely correct. All hypotheses have defects and 

limitations, many of which are unknown to those who formulate the hypotheses. In the 

social and behavioral sciences, knowledge is probabilistic, if only because attempts to 

measure variables always entail errors. Thus, said Archibald, researchers should not be 

trying to prove their explanatory theories or trying to disprove alternative hypotheses 

because every hypothesis and every theory must inevitably fail rigorous tests. He (1967: 

295) said: 

It remains to point out that comparison is multi-dimensional. In the first place, we 

compare rival theories by reference to such criteria as scope, generality, elegance, 

etc.: we ask, e.g. if one is 'about more things' than another, or carries excess baggage 
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in the form of unnecessary elements, or connects more satisfactorily with other 

parts of our theoretical structures. We should not be surprised if a theory which is 

superior on some counts is inferior on others! In the second place, when we 

compare theories with observation, we commonly find more than one criterion. 

Thus we may ask which better accounts for, e. g. total variance, or for turning points, 

or for amplitude of fluctuations. Once again, we should not be surprised if the theory 

which does better by some criteria does worse by others. The case of vector-

dominance is the rare and lucky one in which one theory at last wins all down the 

line, so that we may reject its rival without waiting for the refutation that never 

occurs. 

A perspective similar to Archibald's has often motivated the use of baseline models. 

Researchers have not striven to refute baseline models; they have used baseline models to 

learn more about the phenomena they are studying or to learn how to create better 

theories.  

The foolishness of refutation does not arise solely from the character of social and 

behavioral data. Researchers need to beware of their own personal limitations and 

deficiencies. For instance, Rothman pointed out that theories in physics incorporate logical 

impossibilities, and theories that purport to mesh with each other, do not do so. He (2011: 

186) said: “Vanishing few problems in physics have exact solutions and a physicist’s career 

is one of finding approximations and hopefully not being too embarrassed by them.” 

Rothman's observations point to deficiencies in human logic (Faust, 1984; Meehl, 

1991). Theories of all sorts incorporate assumptions that breakdown when data fall 
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outside limits or even assumptions that can never be true. Gray and Cooper (2010) have 

urged researchers to devote more effort to identifying such logical boundaries. However, 

logical limitations are only some among many challenges. Researchers also have to deal 

with their attributional biases, their propensities to search for confirmatory data, and blind 

spots generated by their hypotheses and theories (Beach, 1966; Calhoun and Starbuck, 

2003; Erev and Barron, 2005; Hansen, 1980; Kahneman and Tversky, 1973; Lichtenstein et 

al., 1982; Phillips et al., 1966; Slovic, 1991). Because researchers write and revise their 

papers after they have completed data analyses, hypotheses and theories incorporate 

retrospective sensemaking, which amplifies the influence of idiosyncratic random events. 

And, because realistic researchers can predict that later research will reveal issues that 

they have not yet seen, they ought to be cautious about making claims about the generality, 

completeness, or accuracy of their theories. 

The biases inherent in personal commitments and the social contexts of research 

imply that the content and characteristics of data are at least as important as the content 

and characteristics of theories. Even superb logic and the most careful methods cannot 

overcome inadequate, deceptive, or misunderstood data. In 1543, Copernicus created a 

cosmological theory that was far better than the theories that had existed, but his proposal 

did not win rapid acceptance. A major reason was the ambiguity of extant data. In 1651, 

Riccioli spelled out 77 reasons why Copernicus's theory could not possibly be correct, and 

some of Riccioli's objections remained unanswerable for two centuries. Scientists needed 

time to develop observational techniques that could produce appropriate data. Similarly, it 

may be that today's behavioral and social theories will appear either foolish or profound as 

researchers develop better measures of economic and social phenomena or better 
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techniques for examining cognitive processes inside human bodies. What is crucial is not 

the volume of data but its quality and relevance. For instance, Davis (2010) has pointed out 

that theories about organizations have remained rather stagnant for over three decades 

even though researchers have been able to subject masses of data to statistical analyses. 

What does the future hold? 

Comparisons with baseline models are more useful analytic tools than conventional 

null-hypothesis tests. Baseline models can provide standards that can range from easy-to-

meet, if researchers are timid, to very-difficult-to-surpass, if researchers dare to make them 

so. Series of baseline models can support increasingly realistic assumptions about the 

context under study, or increasingly abstract assumptions. Careful and systematic 

comparisons between models support iterative theory development (Archibald, 1967, 

Rodgers, 2010). Table 4 offers a few suggestions for iterative development that derive from 

the activities of emerging markets studies. 

The flexibility of baseline models highlights decisions made by researchers. Instead 

of applying standards set by the traditions and rituals associated with conventional null 

hypotheses, researchers decide what standards to use, and they can select or design 

baseline models that are appropriate for their specific research contexts. Researchers 

ought to explain and defend these decisions in terms that relate to their specific studies. 

One resulting challenge for researchers is to become more comfortable with developing 

and explicating the baseline models they use. 
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Although some emerging-markets studies have been using baseline models for over 

half a century, these studies still constitute only small fractions of the published work. 

Baseline models deserve much wider discussion, experimentation, and understanding. 
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Figure 1. Frequency distributions of autocorrelation coefficients in 
emerging-markets time series, 1989-2009

Lag 1 Year

Lag 2 Years

Lag 3 Years



www.manaraa.com

43 
 

 

 

0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
in

 P
er

ce
nt

Autocorrelation Coefficient (Lag 1 Year)

Figure 2. Frequency distributions of autocorrelation coefficients in 
emerging-markets time series, 1989-2009

Absolute Values

Natural-Log Values

Annual Change Values



www.manaraa.com

44 
 

Figure 3. Histogram of simple correlation coefficients reported in published 
emerging-markets studies, 2007-2011 
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Table 1. Types of theories and examples of baseline models 

 Status at one time Changes over time 

Stability and 
change 

Log-linear scaling 

Traditional behavior 

Log-linear scaling 

Traditional behavior 

No-change 

No-change-in-trend 

Random 
processes 

Statistical independence Markov chains 

Bootstrapped distributions of 
period-to-period changes 

Stochastic processes with 
control variables 

Topic-specific 
baseline models 

Traditional CAPM 

Optimal resource allocation 

Epidemic curves 

 

 

Table 2 

Independent probabilities 

Variable 1 

Event 1A 

Probability = 0.2 

Event 1B 

Probability = 0.3 

Event 1C 

Probability = 
0.5 

 

 

Variable 2 

Event 2A 

Probability = 0.2 
0.04 0.06 0.10 

Event 2B 

Probability = 0.2 
0.04 0.06 0.10 

Event 2C 

Probability = 0.6 
0.12 0.18 0.30 
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Table 3 

Independent flows 

Exports 

From Country A 

Percent = 20 

From Country B 

Percent = 30 

From Country 
C 

Percent = 50 

 

 

Imports 

To Country A 

Percent = 20 
 7.5 12.5 

To Country B 

Percent = 20 
5.6  14.4 

To Country C 

Percent = 60 
24.0 36.0  

 

Table 4. Suggestions for developing and revising baseline models 

Initial formulation What kind of very simple process 
could generate data similar to 
the observed distribution of the 
dependent variable? 

Examples include the 
types of models in 
Table 1. 

Comparisons with 
explanatory model 

Are there large differences between predictions of baseline 
model and explanatory model? 

Are there large differences in the fits to data of baseline model 
and explanatory model? 

Possible revisions Would a baseline model that incorporates additional 
properties of the data fit the data very much better? 

Would a baseline model that incorporates fewer properties of 
the data fit the data equally well? 

Would a more complex baseline model fit the data very much 
better? 

Would a simpler baseline model fit the data equally well? 

What changes in the baseline model would reduce the 
differences in fit between the baseline model and the 
explanatory model? 
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